Total Variation Regularization for Manifold-Valued Data
نویسندگان
چکیده
We consider total variation (TV) minimization for manifold-valued data. We propose a cyclic proximal point algorithm and a parallel proximal point algorithm to minimize TV functionals with -type data terms in the manifold case. These algorithms are based on iterative geodesic averaging which makes them easily applicable to a large class of data manifolds. As an application, we consider denoising images which take their values in a manifold. We apply our algorithms to diffusion tensor images and interferometric SAR images as well as sphereand cylinder-valued images. For the class of Cartan–Hadamard manifolds (which includes the data space in diffusion tensor imaging) we show the convergence of the proposed TV minimizing algorithms to a global minimizer.
منابع مشابه
Fast Regularization of Matrix-Valued Images
Regularization of matrix-valued data is of importance in medical imaging, motion analysis and scene understanding. In this report we describe a novel method for efficient regularization of matrix group-valued images. Using the augmented Lagrangian framework we separate the total-variation regularization of matrix-valued images into a regularization and projection steps, both of which are fast a...
متن کاملModel Selection with Low Complexity Priors
Regularization plays a pivotal role when facing the challenge of solving ill-posed inverse problems, where the number of observations is smaller than the ambient dimension of the object to be estimated. A line of recent work has studied regularization models with various types of low-dimensional structures. In such settings, the general approach is to solve a regularized optimization problem, w...
متن کاملRestoration of Color Images by Vector Valued BV Functions and Variational Calculus
We analyze a variational problem for the recovery of vector valued functions and we compute its numerical solution. The data of the problem are a small set of complete samples of the vector valued function and a significant incomplete information where the former are missing. The incomplete information is assumed as the result of a distortion, with values in a lower dimensional manifold. For th...
متن کاملExact Algorithms for L1-TV Regularization of Real-Valued or Circle-Valued Signals
We consider L1-TV regularization of univariate signals with values on the real line or on the unit circle. While the real data space leads to a convex optimization problem, the problem is nonconvex for circle-valued data. In this paper, we derive exact algorithms for both data spaces. A key ingredient is the reduction of the infinite search spaces to a finite set of configurations, which can be...
متن کاملVector-valued Manifold Regularization
We consider the general problem of learning an unknown functional dependency, f : X !→ Y, between a structured input space X and a structured output space Y, from labeled and unlabeled examples. We formulate this problem in terms of data-dependent regularization in Vector-valued Reproducing Kernel Hilbert Spaces (Micchelli & Pontil, 2005) which elegantly extend familiar scalarvalued kernel meth...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Imaging Sciences
دوره 7 شماره
صفحات -
تاریخ انتشار 2014